Translating UNL Expressions to Logical Expressions

M.Tech Dissertation

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology

by

Suresh Kumar M
Roll No: 02305012

under the guidance of

Prof.Pushpak Bhattacharya

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Mumbai
July 27, 2004

Acknowledgments

I express my deep sense of gratitude towards my guide Prof.Pushpak Bhattacharya for his
support, guidance and encouragement throughout the work. I thank Adam Pease for gener-

ously providing his software for this project.

Suresh Kumar M
02305012

Abstract

Universal Networking Language(UNL) is an interlingua for machine translation. The meaning of
a sentence is represented as a list of binary relations. Logical reasoning from this representation
is not possible since the UNL representation do not have variables, quantifiers and implication
explicitly represented. Logic formulas containing these constructs, can be derived from the UNL
expressions. Reasoning can be done on these logic formulas.

In this report, we present an approach for converting the UNL representation of sentences
that can be readily represented in logic, to predicate expressions. Concepts and relations from
Suggested Upper Merged Ontology(SUMO) are used in these expressions.

Contents

1 Introduction
1.1 Outline e e e,

2 Universal Networking Language

2.1 UNL . . . e
2.2 UNL Knowledgebase e
2.3 Representation
2.4 Inferencing e
2.5 Conceptual Graphs L

3 Suggested Upper Merged Ontology

3.1 SUMO . . . e e

3.2 Relation with WordNet
4 Mapping

4.1 Noun UWs e e e e e e

4.2 Verb UWs e e e e e e e

4.3 Adjectives and Adverbs

4.4 Relations e e e e e e e e

5 Translation to Logic

5.1 Restructuring
5.1.1 Implication e e
5.1.2 Conjunction and Disjunctiono L.
5.1.3 Negation e

5.2 Using SUMO e

5.3 Quantification and Translation

6 Conclusions

A Marcus Problem

w N

© 0 O R

10

12
12
14

16
16
17
18
19

21
21
21
23
24
24
24

28

29

Chapter 1

Introduction

Universal Networking Language a.k.a UNL is an interlingua for machine translation of natural
language sentences. The UNL consists of binary relations, attributes and universal words. The
meaning of the natural-language sentences is represented in an intermediate form which can be
translated to sentences in another language. The Enconverter system generates intermediate
representation from the natural language sentences. Natural-language sentences from the inter-
mediate representation are generated by the Deconverter system. The language-specific details
for analysis, generation of natural language sentences are encoded as rules for these systems.
This is the UNL model of machine translation. The system is called the UNL system.

The intermediate representation in UNL can be represented as a network of nodes intercon-
nected with binary relations. The universal words or UWs are the nodes of the network. The
binary relations from UNL represent the role of the UW in the sentence. The network is also
represented, in linear form, as a list of predicates- each binary relation in the network forming a
predicate with arguments as the UWs of the adjacent nodes of the binary relation. These UWs
and binary relations - either in network form or linear form - are called UNL ezpressions.

Though the UNL expressions in linear representation has a structure similar to relations in
predicate logic, logical reasoning from these expressions can’t be done directly. To be specific,
the reasoning mechanism of predicate logic can’t be used directly. The reasoning mechanism in
predicate logic is built around connectives(implication, conjunction, disjunction and negation),
quantifiers and the notion of variable. These connectives, quantifiers and variables are not
represented explicitly in UNL. Connectives are present as binary relations. Quantifiers are
represented as UWs. Node identifiers associated with a UW are the equivalent of a variable.
These clues can be exploited for translating the UNL expressions to logical expressions, and
inferencing can be done on these expressions. The thesis is an attempt in this direction.

The scope of the work includes obtaining the logical representation from the UNL represen-
tation of the sentences that can be readily represented in logic i.e.,

e Sentences containing quantifiers every, all, some.
e Sentences containing if, and, or as connectives.

The concepts and relations from Suggested Upper Merged Ontology are used in the logical
representation of the UNL expressions. Concept or relation to be used for a particular Universal

Word is determined by the relation between UW, WordNet and the SUMO Ontology.

1.1 Outline

Chapter 2 gives the necessary background on Universal Networking Language. Description of
universal words and UNL expressions is presented. A knowledge representation formalism called
Conceptual Graphs [Sow83] is described in this chapter. This formalism is very much similar to
the semantic networks generated by UNL system.

Chapter 3 describes Suggested Upper Merged Ontology[NP01][SUMO03]. A description of
the top level categories in the ontology is presented. Its relation to WordNet is described. An
inference engine used with SUMO ontology is described.

Chapter 4 describes the method for linking universal words to SUMO concepts. The structure
of the UW, and the relation between SUMO concepts and WordNet synsets is used extensively
for linking a UW to the corresponding SUMO concept.

Chapter 5 presents the approach for translation of UNL expressions to logical expressions.
Principles from conceptual graph theory, discourse representation theory are used in the trans-
lation. Chapter 6 gives conclusions and the future directions.

Chapter 2

Universal Networking Language

UNL[Fou03] or Universal Networking Language is an interlingua used in Machine Translation of
natural languages. The language consists of binary relations, attributes and Universal Words.
The sentential information is represented as a semantic network of Universal Words interlinked
with binary relations, and annotated with the attributes. Figure 2.1 is the UNL representation

for John ate rice with spoon.

(eat(icl>do) @entry @past

obj Ins

[John(iof>person} [rice(ic|<food)] [spoon(icl>artifact)]

Figure 2.1: UNL representation for John ate rice with spoon

The UNL system has two components- Enconverter and Deconverter. Intermediate repre-
sentation from sentences in natural language is generated by Enconverter. This intermediate
representation can be translated to another natural language using Deconverter.

2.1 UNL

UNL consists of three categories in its vocabulary- universal words, relations and attributes.
Universal Words or UWs correspond to words in a sentence. The relations represent the re-
lationship between UWSs present in the sentence. Attributes annotate the UWs to give the

speakers view point.

Universal Words The Universal Words or UWs correspond to words in a sentence. UWs
are formed such that they have a single meaning. Each UW has a headword(a word in

a natural language), and an optional list of constraints. These constraints disambiguate

the meaning of the headword. The relations icl, equ, iof, pof are usually present
as a constraint in the UW. These relations are subclass, equivalent, instance and part-of
relations of UNL. The structure of the UW for “fruit” is shown below. Head-word is fruit.
The constraint list defines the UW as a subclass of food, part of plant.

head-word Constraint List
e - N

fruit(icl>food>functional thing, icl>part of plant, pof>plant>living thing)

The relations in the constraint list serve as disambiguating information. The two UWs
with “club” as the head-word are- club(icl>weapon>tool) is a base-ball or golf club.

club(icl>organization>group) is formal association of people with similar interests.

The Universal Words thus defined are arranged in a hierarchy in UNL Knowledgebase[Unl03].
The concepts at the top level of the hierarchy are explained in next section.

Relations The binary relations of UNL represent relationship between two UWSs present in a
sentence. There are 41 relations in UNL. The relations can be roughly grouped into 3
categories- the role of the UW in an action(agt, obj, ins, cag, gol etc), relations indicating
time and place where an event occurred or an entity is present(plc, tim, plt, tmt etc),
relations for expressing state or attributes of an entity(aoj, mod, cao etc). Description of
a few relations follows.

agt defines a thing that initiates an action.

Ex: “Car runs” is agt(run(icl>act(agt>volitional thing)), car(icl>vehicle)).
obj defines a thing that is directly affected by an event or state.

Ex: “Man murdered” is obj (murder (agt>thing, obj>thing), man(icl>human))
ins defines an instrument to carry out an event.

Ex:“write with a pencil” is represented as

ins(write(icl>express(agt>thing,obj>thing)), pencil(icl>stationery))
aoj defines the attribute or state of a thing.

Ex:“leaf is read” is represented as aoj(red(aoj>thing), leaf(pof>plant))
mod defines a thing that restricts a focused thing.

Ex:“All Indians” is represented as mod (Indian(icl>person), all(mod<thing)) .
plc defines a place where an event occurs, a state is true, or a thing exists.

Ex:“cook in the kitchen” is represented as

plc(cook(icl>do), kitchen(pof>building))
tim defines the time when an event occurs or a state is true.

Ex:“leave on Tuesday” is represented as tim(leave(icl>do),Tuesday(icl>time))
rsn defines a reason why an event or a state happens.

Ex:“Didn’t go because of rain” is represented as

rsn(go(icl>do), rain(icl>weather))
con defines an event or state that conditions a focused event or state.

Ex:“If u are tired, we will go home” is represented as

con(go(icl>move (agt>thing,gol>place,src>place)), tired(aoj>thing))

and defines a conjunctive relation between concepts.

Ex:“John and Mary” is and(Mary(iof>person), John(iof>person))
or defines a disjunctive relation between concepts.

Ex:“John or Mary” is or (Mary(iof>person), John(iof>person))

Attributes Attributes are used to describe what is said from the speaker’s point of view UWs
and Relations describe objective things, events and states-of-affairs in the world. At-
tributes enrich this description by representing speech acts, propositional attitude of the
speaker, time and reference with respect to speaker. Description of a few attributes follows.

@generic a generic concept ex: “Dog is a faithful animal.”

@def already referred in the discourse ex: “The book you lost”

@indef non-specific class ex: “There is a book on the desk”
@not negation ex: “John do not like Jim”

@past happened in the past ex: “It was raining yesterday.”
@future will happen in future ex: “I will submit the report tomorrow”

The attributes Qgeneric, @Qdef, Qindef represent speakers view of reference i.e whether
the expression refers to a particular entity or all the entities of that class. The attribute
@generic refers to the whole class where as @def, @indef refer to a particular individual
of that class. The attribute @not is the equivalent of a negation. The attributes @past,
@future, @present represent the time of an event from the speaker’s view.

2.2 UNL Knowledgebase

The UNL knowledgebase[Unl03] is a language-based ontology. The Universal Words are defined
and categorized based on their usage in a natural language. The UWSs are arranged in a hierarchy
with icl, pof, equ, iof relations which correspond to subclass, part-of, equivalence and instance
relations respectively. The top level of the UW hierarchy is shown in Figure 2.2. Universal
Word is the root of the hierarchy, which corresponds to the universal entity. All the other UWs
are categorized based on the syntactic category of the headword. The categories are adjective
concept, adverbial concept, nominal concept, verbal concept.

The UW thing is the generic noun UW. It is classified into abstract thing, concrete thing,
place(icl>thing), volitional thing. The concept abstract thing consists of UWs for events,
attributes, information etc. The concept concrete thing consists of UWs for concepts which
will have physical presence. This includes all the physical objects, substances, animals, plants
etc. The class place(icl>thing)consists of UWs for places, positional attributes and directional
attributes. The class volitional thing consists of concepts like human, animal etc. The icl
hierarchy of the concept for man is man>human>living thing>concrete thing>thing, where >
indicates icl relation.

At higher level, verbs are classified into three broad categories- ‘do’, ‘occur’ and ‘be’ verbs.
The ‘do’ verbs define the concept of an event that is caused by someone or something. The ‘occur’
verbs define concept of an event that occur on their own. The ‘be’ verbs define the state of an
event or object. The verbs eat, flow, like belong to ‘do’, ‘occur’ and ‘be’ class of verbs respectively.
The UW for a verb is defined based on the argument structure of the verb, and is included in

the appropriate higher level class. The uw for the verb eat is eat (ic1>do(agt>thing,obj>food)),
which shows that the verb “eat” is a ‘do’ verb and it takes two arguments.

The adjective UWs are categorized in two classes- uw(aoj>thing), uw(mod<thing). Predica-
tive adjectives come in uw(aoj>thing). Attributive adjectives belong to uw(mod<thing). The
adverbs are defined as subclass of uw(icl>how).

Universal Word

equ

T
]
icl icl
Thing do(hing) Do
| i o(agt>thin
abstract thing do(agt>thing, gol>th|n %
— concrete thing do(agt>thing,gol>thing,obj>thing)—
: . do(agt>thing,gol>thing,ptn>thing) —
— functional thing do agt>th(ijn%,90|>}]hi”9’Sg.C>H.“”
| i i o(agt>thing,obj>thing) —
place(icl >thing) 4 - gt>thing, obj>thing, opl>thing) —
—Volitional thing do(agt>thing,obj>thing,ptn>thing —
do(agt>thing,obj>thing,src>thing) —
L do(agnt>thing,ptn>thing) —
ol Adjective Concept do(agnt>thing,ptn>thing) —
t uw(aoj>thing) occurie

uw(mod<thing) occur(gol>thing, obj>thing) —

occur(gol>thing,obj>thing>,src>thing) —
occur(obj>thing) —

el Adverbial Concept occur(src>thing) —
L how

Jcl |
be(aoj>thing) j
be(aoj>thing, obj>th|n %

Figure 2.2: Top level concepts in the UNL Knowledgebase.

2.3 Representation

The UNL representation of a few English sentences that can be readily represented in logic
is given in figures from Figure 2.3 to Figure 2.8. These expressions are generated manually
by following the examples given in the UNL specification[Fou03] and the documents in UNL
available at [Unl03]. The UWs are represented by rectangular boxes. UNL binary relations are
represented by a labeled arrow; the name of the binary relation as the label, head of the arrow

pointing at second argument of the relation.

know(aoj>thing,obj>thing) .Qentry ‘

’»aoj—)‘ Indian(icl>person) ‘(—mod«(every (mod<thing)

—obj —>‘ Sachin (iof>person) ‘

Figure 2.3: Every Indian knows sachin

know(aoj>thing,obj>thing) .Q@entry ‘

a0j —>‘ John (iof>person) ‘

obj —>‘ Sachin (iof>person) ‘

COH—)‘ Indian(aoj>thing) }»a,oj—)‘ John (iof>person)

Figure 2.4: If John is an Indian, then John knows sachin

know(aoj>thing,obj>thing) .Qentry ‘

’»obj—)

—a0j— ‘ John (iof>person) }»and—)‘ Jim(iof>person).Q@entry

Sachin(iof>person) ‘

Figure 2.5: John and Jim know Sachin

know(aoj>thing,obj>thing) .Qentry ‘

a0j —>‘ John (iof>person) ‘

obj —)‘ Sachin(iof>person) ‘

and—)‘ Indian(aoj>thing) ‘ faoj—>‘ John (iof>person)

Figure 2.6: John knows Sachin and John is an Indian

know(aoj>thing,obj>thing) .@entry.@not ‘

taoj —>‘ John (iof>person) ‘

obj —>‘ Sachin (iof>person) ‘

Figure 2.7: John does not know sachin

Figure 2.3 is the UNL representation of Fvery Indian knows sachin. The quantifier every is
represented in UNL as every (mod<thing). It is connected to the Indian(icl<person) through

greet(agt>thing,gol>thing)%ﬂgt—ﬂman(ic1>male person) : 01

goLﬁ*man(icl>male person):OQ‘

Figure 2.8: Man kills man

the modifier relation mod. The existential quantifier some is also represented similarly.

Figure 2.4 is the UNL representation of If John is an Indian, John knows sachin. The
conditional in if... then.. is represented by the relation con. The con relation relates an event
or state with another event or state that acts as a condition. The conditioning event is the node
at the tail of the edge.

Figure 2.5 is the UNL representation of John and Jim know Sachin. The connective and
is represented as and relation between the UWs John(iof>person) and Jim(iof>person).
The meaning of the sentence is that both John and Jim know sachin. So a compound-UW is
created. This compound-UW is connected to the UW know(aoj>thing,obj>thing). Figure 2.6
is another example with and as connective. Here two clauses are connected with and relation.
The representation of the connective or is similar.

UNL representation for John does not know Sachin is shown in Figure 2.7. The negation is
represented as an attribute @not annotating the uw know(aoj>thing,obj>thing).

2.4 Inferencing

Though UNL is intended as an interlingua for machine translation, the predicate like structure of
UNL relations lends itself readily for question answering and inferencing tasks as well. Previous
work in this direction]MRK 03] used subgraph matching for question answering; question is
represented as a graph with the expected answer node as a variable. This query graph is
matched against the UNL representation of a document for retrieving the sentences containing
the query graph as subgraph. This is essentially information extraction, and not inferencing.

The subgraph matching approach is not suitable for logical inferencing. From the UNL
representation of the short discourse “Every Indian knows Vajapaye. Sachin is an Indian”
shown in 2.9, it can not find whether Sachin knows Vajapaye or not, as the relationship between
these UWs is not present explicitly in the UNL representation.

[S:001]

mod(Indian(icl>person) , every(mod<thing))

aoj (know(aoj>thing,obj>thing)@entry, Indian(icl>person))
obj (know(aoj>thing,obj>thing)@entry, Vajapaye(iof>person))
[/s]

[S:002]

sachin(iof>Indian)

[/s]

Figure 2.9: UNL representation of Every Indian knows Vajapaye. Sachin is an Indian.

The graph matching approach treats the UWs of quantifiers- every(mod<thing), all(mod<thing)
and any (mod<thing)- just like other UWs. These UWSs should be handled separately. For this,
the notion of quantifier is needed.

To introduce quantifiers- the concept of instantiation, variable or concept are also needed.
The notion of a variable is implicitly present in the UNL. A variable can be associated with each
unique UW present in the UNL representation of a sentence. Multiple nodes with the same UW
are distinguished by a unique node identifier. The sentence “Man greets man” is represented in
UNL as in Figure 2.8. The UW man(icl>male person) is used twice, to distinguish the man
who greets and the receiver.

Giving a unique identifier for a UW node is only a notational change. Associating a vari-
able with the UW node actually means creating an instance of that UW. But, can all the UWs
be instantiated? India(iof>country>region, iof>nation>society) is a constant, member(icl> per-
son>human, pof>group) is a relation, aggressive(icl>uw(aoj>thing)) is also a constant.

The question of which concepts can be instantiated is an unresolved one, involving philosoph-
ical concerns and debates. Without going deeper into the details, principles from an existing
ontology called Suggested Upper Merged Ontology can be adapted for our purpose. This requires
us to find the closely related concept in SUMO for each UW.

2.5 Conceptual Graphs

The nodes in the semantic network created by UNL can be transformed to include a quantifier,
a variable or a constant. These kind of semantic networks are called Conceptual graphs[Sow83].
Conceptual graphs can be translated to equivalent predicate formulas.

Conceptual graphs are knowledge representation formalism designed to have a smooth trans-
lation from natural language and predicate logic. The formalism is a subclass of semantic net-
works and it is a more readable representation of predicate logic.

Conceptual graph is a bipartite, finite and directed graph of concept nodes and relation nodes.
In the graphs, concept nodes represent classes of individuals, and relation nodes show how the
concept nodes are related.

The conceptual graph representation of “John goes to Boston by bus” is

<—agt-| Go : X |plt—>| City : Boston
Ling—s

The rectangular boxes are called concept nodes. Each concept node in a CG consists of

type and referent part. The referent part can be a variable, quantifier, a constant or another
conceptual graph. [Person:John], [Go:X], [City:Boston] are concept nodes. Person, Go,
City are the type part of the nodes.John, X, Boston are the referent part of the concept nodes
respectively. If the referent part of the concept node is omitted, it takes existential quantifier by
default. The concept node [Bus] assumes existential quantifier by default. The relation nodes
are represented as labeled arcs between the concept nodes. agt, plt, ins are the relation
nodes in the above. The direction of the arrow on the arc determines the argument position of
the incident concept nodes. The concept node at the head of the arc will be the first argument

10

of the relation and the concept node at the tail of the arc fills the second argument position.
For the relation agt, the concept nodes [Go:X] and [Person:John] are the first and second
arguments respectively.

The conceptual graph representation for “Every Indian knows sachin” is

(—aoj—~—0bj—> ‘Person : Vajapaye‘

The quantifier every is shown as V in the referent part of the concept node [Indian:V].

Conceptual graph representation can be translated to formulas in logic. The method is given
[AOO00][F.S93]. Roughly, the method is

1. For a concept node C, let C(z) be the predicate.
2. For a relation Rel in the conceptual graph with C;,Cy, .. as its argument nodes,
e [f the quantifier of all its argument nodes is 3, then the logical representation of the
relations is Rel(z1,x2,..)
e If the quantifier of a node C; is V, Ci(z;) — Rel(z1,.., Xj,..) is the logical represen-

tation of the relation.

3. The formula for the conceptual graph is conjunction of the predicates of the concept nodes
and relations, prefixed with universal quantifier followed by existential quantifier.

For the conceptual graph of the sentence “John goes to Boston by bus”, the logical repre-
sentation is
Jz,y person(John) A city(Boston) A Bus(x) A Go(y) A agt(y,John) A plt(y,Boston) A ins(y,x).
For the conceptual graph of “Every Indian knows Vajapaye”, the logical representation is
Vz3y Indian(x) A person(Vajapaye) Aknow(y) A(Indian(x) — aoj(y,x)) Aobj(y,Vajapaye).

11

Chapter 3

Suggested Upper Merged Ontology

According to Tom Gruber- “An Ontology is an explicit specification of a conceptualization”. An
ontology consists of names of classes and relations among those classes. Based on the motiva-
tion for their creation, the ontologies are categorized as logic-based, language-based ontologies.
Ontologies can also be labeled as upper ontology, domain-specific ontology. Domain-specific
ontology defines concepts, relations for a particular domain. Upper ontology consists of con-
cepts that are meta, generic and philosophical that can address a broad range of domain areas.
IEEE is working towards developing a Standard Upper Ontology. Suggested Upper Merged
Ontology[NP01][SUMO3] is one of the starter documents submitted for the Standard Upper
Ontology Working group[SUOO04]. It is a formal, logic-based ontology.

3.1 SUMO

Suggested Upper Merged Ontology is an upper ontology proposed as a starter document for the
development of Standard Upper Ontology. SUMO defines and organizes the abstract view of the
world in a domain-independent and application-independent way. Domain-specific ontologies are
built on top of SUMO.

SUMO consists of concepts, relations and axioms that constrain the meaning of the concepts
and relations. The top level concepts are shown in 3.1. Entity is the universal concept. Physical
and Abstract are the two disjoint subclasses of Entity. Events, situations and objects come
under the Physical class. Attributes, functions, relations, numbers and other mathematical
entities come under Abstract category. Physical category has events, objects that actually occur
or exist at some point of time. Process, Object are its subcategories. Object roughly corresponds
to our intuitive notion of object. It includes geographical regions, organism and other tangible
entities . Process consists of entities that exist in time but are not objects. All events and
situations belong to this category.

Abstract category consists of entities which do not exist in space or time. Entities belonging
to this category are usually associated with some physical entity. Attributes, functions, relations,

numbers belong to this category.

12

Entity
|=>Physical
| |=>Process
| |=>DualObjectProcess
|=>InternalChange
|=>ShapeChange
|=>IntentionalProcess

|
| |
| |
| |
I [|=>Guiding
| | | |=>ContentDevelopment
| | |=>Motion
| [=>0bject
| |=>Collection
| |=>Agent
| | |=>Group
| | |=>0rganism
| |=>SelfConnectedlbject
| | |=>Food
| | |=>Substance
| |=>Region
| | [=>GeographicalArea
| | | =>SpaceRegion
|=>Abstract
|=>Proposition
| |=>Procedure
|=>Relation
[=>Quantity
| | =>Number
| [=>PhysicalQuantity
[=>Attribute
| |=>InternalAttribute
| |=>RelationalAttribute
|=>Set0rClass

Figure 3.1: The top level of SUMO concept hierarchy.

SUMO has a rich set of relations and functions. They can be grouped into temporal relations,
spatial relations, case-relations and other mathematical relations. Relations before, after, starts,
finishes etc define relationship between temporal objects. Relations agent, patient, destination,
instrument etc denote the role played by the entity in an event. Relations connects, between,
located etc denote spatial relation between entities.

Axioms are well-formed formulas in predicate calculus. Axioms provide additional con-
straints on the meaning of the concepts and relations. Figure 3.2 has an axiom for concept
Murder. ?MURDER, ?PERSON are variables which are instances of type Murder, Human respec-
tively. The meaning of the axiom is- if an instance of murder took place, there will be an
instance of Human who is the object of murder i.e who is murdered.

13

(=>
(instance ?MURDER Murder)
(exists (7PERSON)
(and (patient ?MURDER ?PERSON)
(instance ?PERSON Human))))

Figure 3.2: An axiom in SUMO.

The Vampire inference system [VR] is used for inferencing on the SUMO ontology. It is a
resolution-based system for automatic theorem proving in first order logic with equality. The
system is able to provide inference using first order logic formulas. But it can’t handle mathe-
matical and temporal reasoning.

A few ontology modules are developed based on SUMO. Middle Level Ontology a.k.a MILO
is developed as a bridge between the abstract content of the SUMO ontology to more domain-
specific ontologies. Other modules available from [SUMO3] are an ontology of geography, gov-

ernment and transportation.

3.2 Relation with WordNet

Ian Niles et al[Nil03] linked the synsets from WordNet1.6 to the corresponding concept in the
ontology. The entries in the WordNet database are augmented with the related SUMO concept.
The synset corresponding to the verb breathe is linked to the SUMO concept Breathing. The
SUMO concept is the last entry in the synset record. The = symbol followed by the concept
name is an indicator that the synset is mapped to a concept with the same meaning. The
augmented WordNet record is shown below.

29 v 03 breathe 0 take_a_breath O respire 0 013 * 00003763 v 0000 * 00003142 v
0000 ~ 00003142 v 0103 ~ 00003763 v 0102 ~ 00002143 v 0000 ~ 00002343 v 0000 ~
00002841 v 0000 ~ 00003011 v 0000 ~ 00003142 v 0000 ~ 00003763 v 0000 ~ 00004868
v 0000 ~ 00005197 v 0000~ 00011570 v 0000 02 + 02 00 + 08 00 | draw air into,
and expel out of, the lungs; "I can breathe better when the air is clean"
&/Breathing=

Since SUMO is an upper ontology, every synset may not be linked to the concept with the
same meaning. Some synsets are mapped to a subclass of a SUMO concept when there are
slight difference in meaning of the synset and the concept. For example, synset corresponding
to “choke”-breathing with difficulty is mapped to a subclass of Breathing, represented in the
synset record as Breathing+.

29 v 01 choke O 001 @ 00001740 v 0000 01 + 02 00 | breathe with great difficulty,
&/,Breathing+

Synsets corresponding to individuals, places, countries etc are defined as an instance of a SUMO
concept. For example, synset of Gandhi is defined as an instance of Human and represented in
the synset record as Human@

14

18 n 03 Gandhi O Mahatma_Gandhi O 002 @ 07524377 n 0000 @ 06861412 n 0000 |
(1869-1948) political and spiritual leader during India’s struggle with Great
Britain for home rule; an advocate of passive resistance &}Human@

This relationship between WordNet synsets and SUMO concepts is exploited for mapping the
universal words to the corresponding SUMO concepts.

15

Chapter 4
Mapping

Each Universal Word should be linked to the SUMO concept with closest meaning, so that
concepts from the SUMO ontology can be used as the representation of the UW in logic. This
is akin to mapping ontologies i.e. finding concepts with similar meaning from two different
ontologies. The lexical and structural similarities of the concepts are used in [NM00] for deciding
the mapping.

For mapping UW to SUMO concept, the relation between WordNet and SUMO is used along
with the lexical and structural comparison. First, a synset in WordNet for the UW is selected
from the different senses of the head-word of the UW. Next, the SUMO concept associated with
the synset is taken for mapping the UW. The method for finding the synset for the UW is
different for nouns, verbs, adjectives and adverbs. Subsequent sections describe these methods.

4.1 Noun UWs

Algorithm 1 gives the algorithm for mapping a noun UW. The WordNet synset for the UW is
selected from the synsets of the head-word of that UW by comparing the icl and pof hierarchy
of the UW with the hypernyms and holonyms of the sense. Out of 4400 noun UWSs present in
UNL knowledgebase, 3000 noun UWs are mapped in this way. Remaining UWs are mapped
manually.A few UWs along with the selected synset and SUMO concept are listed below.

Universal Word Sense selected SUMO concept
beast (icl>animal{>1living thing}) beast=>organism=>living thing Animal
step(icl>movement>action) step=>travel=>movement=>.. subclass Walking
fin(icl>concrete thing, pof>fish) part of: fish subclass Organ

The head-word ‘beast’ of the UW beast (icl>animal{living thing} has 2 senses in Word-
Net. The hypernyms of the selected sense have the word 1living thing in common with the
icl hierarchy of the UW. The head-word fin of the UW fin(icl>concrete thing, pof>fish)
has 6 senses in WordNet. The holonyms of the selected synset have fish in common with the
pof relations of the UW. The SUMO concept related to this UW is a subclass of Organ i.e the
concept is not present in SUMO and have to be added as a subclass of Organ.

16

Algorithm 1 Mapping Noun UWs

Input: Universal Word(uw)

Output: SUMO Concept(concept)
hw <« headword(uw)
icl < parentsof (uw); pof < isPartO f(uw)
syns < synsets(hw)

for all S € syns, while related synset not found do
hypernyms < hypernymsof(S)
hylonyms <« holonymsof(S)
if ((ic A\ hypernyms) # {}) then
S is the matching synset
else if ((pof A\ holonyms) # {}) then
S is the matching synset
end if
end for
if S is the matching synset for UW then
concept +— sumoConcept(S)
end if

4.2 Verb UWs

Algorithm 2 gives the algorithm for mapping verb UWs. This similar to the algorithm used
for mapping nouns except that only hypernymy relation is used as holonyms are not available
for verbs. Only 390 verb UWs are mapped this way, out of 1730 verb UWs present in the
UNL knowledgebase. Remaining verb UWs are mapped manually. A few examples where the
mapping is done by the algorithm are listed below.

Universal Word Selected sense SUMO Concept
sigh(icl>breathe(agt>volitional thing)) sigh=>breathe subclass Breathing
shift (icl>move(agt>thing,gol>place)) shift=>move Translocation
rule(icl>decide(agt>thing,obj>thing)) rule=>decide subclass Ordering
settle(icl>resolve(agt>thing,obj>thing)) settle=>resolve subclass Communication

recommend (icl>propose (agt>thing,obj>thing)) recommend=>propose subclass Communication

Only 390 verb UWs are mapped this way. The subclass hierarchy of verbs in UNL knowl-
edgebase is very flat i.e most verb UWs are direct subclasses of be, do, occur. Hence, the icl
list of the UW do not have anything in common with the hypernym list of the head-word of the
UW. When the subclass hierarchy of the UW is more deeper, the WordNet synset for that UW
is selected correctly. A few such cases are listed above.

17

Algorithm 2 Mapping Verb UWs

Input: Universal Word(uw)

Output: SUMO Concept(concept)
hw <« headword(uw)

icl < parentsof (uw)
syns < synsets(hw)
for all S € syns, while related synset not found do
hypernyms < hypernymsof(S)
if ((ic A\ hypernyms) # {}) then
S is the matching synset
end if
end for
if S is the matching synset for UW then
concept <— sumoConcept(S)
end if

4.3 Adjectives and Adverbs

Adjectives and adverbs are arranged in a subclass hierarchy in UNL knowledgebase. But Word-
Net do not have hypernymy relation for adjectives and adverbs. icl information can not be used
for finding the sense of the headword. Algorithm 3 is used for mapping adjectives and adverbs.

Algorithm 3 Mapping adjectives and adverbs

Input: Universal Word(uw)
Output: SUMO concept (conc)
headword < headword(uw)
syns < synsets(headword)
choices < []; {Initializing choices to empty list}
for all S € syns do
¢ < sumoConcept(S)
add(c, choices)
end for
select the concept conc which appears maximum number of times in choices

All the three senses of adequate are mapped to SubjectiveAssessmentAttribute. So the
UW adequate(icl>(uw(aoj>thing)) is mapped to SubjectiveAssessmentAttribute. In
fact, many of the adjectives and adverbs are mapped to the same concept SubjectiveAssess-
mentAttribute. This is because the representation of adjectives and adverbs in SUMO is very
coarse.

18

4.4 Relations

The UNL relations define the relationship between the entities present in a sentence. These
relations can be roughly classified into case-relations and spatio-temporal relations. The case-
relations indicate the role played by an entity in the event. The relations agt, obj, ins, gol
etc belong to this category. The spatio-temporal relations relate the entities, events and states
with the time of their occurrence and the place where they occurred. The relations dur, tim,
tmf, tmt, plc, plf, plt etc belong to this category.

Many of the case relations of UNL are available in SUMO as well. Relations which are not
present in SUMO can be defined as a composition of relations present in SUMO. The following

table lists some of the relations and their corresponding SUMO relation.

UNL Relation

Meaning

SUMO Relation

agt(do, thing)

a thing that initiates an action

agent(Process, Agent)

aoj(uw(aoj>thing), thing)

defines a thing that is in a state or

has an attribute

property(Entity, Attribute)

ben(do, thing)

an indirectly related beneficiary or

victim of an event

destination(Process, Entity)

obj(do, thing)

defines a thing that is directly af-
fected by an event

patient(Process, Entity)

ins(do, concrete thing)

defines an instrument to carry out

an event

instrument (Process, Object)

cnt(thing, thing)

defines an equivalent concept

equal(Entity, Entity)

pens

pur(do, do) the purpose of an agent of an event | hasPurpose(Physical, Sentence)

coo(do, do) defines a co-occurring event for a fo- | cooccur(Physical, Physical)
cused event

rsn (do, do) defines a reason why an event hap- | causes(Process, Process)

Table 4.1: UNL relations and the corresponding SUMO relations.

The spatio-temporal relations of UNL didn’t have an exactly matching relation in SUMO.

But they can be defined with the help of the relations present in SUMO. The functions whereFn,
whenFn and other temporal relations of SUMO are used for defining the UNL relations. A
description of these relations follows.

whenFn(Entity) This function gives the time interval in which the entity exists.

19

whereFn(Entity, Time Interval) This function gives the place in which entity is present
during that time interval.

beginFn(Time Interval) gives the begining of a time interval.
endFn(Time Interval) gives the end of a time interval.

Using the above SUMO relations, some of the spatio-temporal relationships of UNL can be
defined as follows:
ple(do, thing) (equal Thing (WhereFn do (WhenFn do)))
Which means, the place where the action do took place is equal to the entity denoted by
Thing.
plf(do, thing) (equal Thing (WhereFn do (BeginFn (WhenFn do))))
Which means, the placewhere the action do began is equivalent to Thing. The plt relation
is defined in the same way.
tim(do, time) (equal time (WhenFn do))

which means, the time when the action do took place is equal to time.

tmf(do, time) (equal time (BeginFn (WhenFn do)))

The time when the action do begins is equal to time. The tmt relation is defined similarly.

The relations and, or are mapped to the logical and, or respectively. But the meaning of
these relations in natural language is not limited to the logical operations.

Of all the attributes, only the attributes that represent time from the speaker’s point of view
are mapped to SUMO. Other attributes for representing the speech acts, propositional attitudes
of the speaker etc are not mapped as SUMO do not have concepts for representing the speech
acts, propositional attitudes. The attributes of time and the corresponding SUMO functions are
shown in 4.2

Attribute Definition SUMO Function

@past Something happened in the past pastFn
@future Something will happen in future futureFn
@begin Beginning of an event or a state beginFn

Table 4.2: Attributes of time and the related SUMO functions

20

Chapter 5

Translation to Logic

Before translating the UNL graph to logic formulas, some restructuring of the arguments is
done for the relations con, and, or. This introduces the connectives =, V, A. Next, a logical
representation is associated with the nodes of the UNL graph using the concepts, relations from
SUMO. Then, the whole graph is translated to logic representation using the equivalence of
Discourse Representation Structures and First order logic given in [KR]. Quantifiers are added
to the logical expression in this stage.

5.1 Restructuring

This phase introduces the connectives =, V, A, = into the network representation of the UNL

expression.

5.1.1 Implication

Implication is introduced in two cases- when the expression contains a universal quantifier like
all (mod<thing), every(mod<thing), or when the expression has con relation.
Sentences with a universal quantifier have a logical representation containing an =. The

logical expression associated with “Every Indian knows Vajapaye” is
Vz(Indian(x) = knows(x,Vajapaye)).

Same intuition is followed while translating the UNL representation to logical expression. An
= will be introduced following the Conceptual Graph method. For the UNL graph G,

1. From G, remove the quantifier node and the relation linking it to the quantified node.
2. Antecedent of the implication is the quantified node
3. Consequent of the implication is the Graph G.

The sentence “Every Indian knows Vajapaye” is represented in UNL is in Figure 5.1. The corre-
sponding restructured graph is in Figure 5.2. The nodes every(mod<thing) , Indian(icl>person)
are the quantifying node, quantified node respectively. The node every(mod>thing) and the

21

relation mod is removed from the initial semantic network. This semantic network is the con-
sequent part of the =. The quantified node Indian(icl>person) will be the antecedent. The
antecedent and consequent, thus formed, are the two nodes of the semantic network in Figure
5.2 with = as the only edge.

‘know(a0j>thing , obj>thing).Qentry ‘ —0bj—>‘ Vajapaye(iof>person) ‘

ao j—‘ Indian(icl>person) }»mod—)‘ every(mod<thing) ‘

Figure 5.1: UNL representation for “Every Indian knows Vajapaye”

‘know(a0j>thing , obj>thing).@entry }»aoj—) ‘Indian(icbperson) ‘

‘ Indian(icl>person) ‘ =

,obj—>‘ Vajapaye(iof>person) ‘

Figure 5.2: Introducing implication in UNL expression of Figure 5.1

Sentences with conditional clauses also have an = in their logical representation. The log-
ical expression associated with the sentence “If John owns a donkey, he beats it” contains an
implication. The expression is Vz(donkey(z) V owns(z, John) = beats(John,z)). The condi-
tional aspect of this kind of sentences is represented in UNL using con relation. The relation
con(uwl,uw2) means uw2 acts as a condition for the occurrence of the event or state expressed
by uwl. The UNL representation of the above sentence Figure 5.3. This is slightly modified
in order to avoid anaphora. The actual expression will have the pronouns I(icl>person) and
it (ic1l>thing) as the agt, obj of the node beat (agt>thing,obj>thing).

‘ beat (agt>thing, obj>thing) .@entry }»agt—)‘ John (icl>person) ‘

’»Obj —)‘ donkey (icl>mammal) ‘

(—con«(own (agt>person, obj>thing) }»agt—)‘ John (icl>person) ‘

obj —>‘ donkey (icl>mammal) ‘

Figure 5.3: UNL representation for “If John owns a donkey, he beats It”.

The two arguments of the con relation are not the actual antecedent and consequent of
an implication. As evident from the above example, the argument UWs are only part of the
antecedent and consequent. The actual antecedent, consequent are the subgraphs formed by re-
moving the con relation from the network. For the network G containing the edge con(UW1,UW2),
the antecedent and consequent are obtained as follows.

1. Remove the edge con(UW1l, UW2).

2. If con is the only path between UW1 and UW2, step 1 creates two disjoint graphs G1,
G2. G1 contains UW1 along with all its relations. G2 contains UW2 along with all its

relations.

22

3. Otherwise, create graph G1 with only UW1 initially. Add each node N in G, reachable
from UW1 if the path from UW1 to N does not contain UW2. Add edge E(N1,N2) to G1
if nodes N1 and N2 are present in G1 and edge E(N1,N2) is present in G. Similarly, create
graph G2 with UW2 initially and expand G2 similar to G1.

4. Create a new graph with nodes G1 and G2, and an = relation from node G2 to node G1.

For the UNL expression shown in Figure 5.3, the restructured graph is shown in 5.4. The con
relation between beat(agt>thing, obj>thing and own(agt>thing, obj>thing) is restruc-
tured as an implication. The nodes John(icl>person) and donkey(icl>mammal) are reachable
from both own(agt>thing, obj>thing) and beat(agt>thing, obj>thing). So both thees
concepts are added to the consequent graph as well as the antecedent graph.

own (agt>person, obj>thing).©entry‘ ‘beat(agt>person, obj>thing).©entry‘

John(icl>person)‘ = tagt—ﬂJohn(icl>person)‘

tagt—)
obj—ﬂdonkey(icl>mammal)‘ obj—ﬂdonkey(icl>mammal)‘

Figure 5.4: Introducing = in UNL representation in Figure 5.3.

5.1.2 Conjunction and Disjunction

The relations and, or represent the logical aspects of sentences involving conjunction and dis-
junction. These relations are used in two cases;when the sentence consists of two clauses joined
by and or or as in the sentence “ John is an Indian and John knows Sachin”;for sentences like
“John and Jim know Sachin” to represent the conjunctive participation of both John and Jim
in know. The UNL representation for this sentence is in 5.5. The corresponding restructured

graph is in Figure 5.6.

know(aoj>thing,obj>thing).@entry%iﬂﬁ—+‘Sachin(iof>person)‘

Laoj—+ ‘John(iof>person) %and—%‘Jim(iof>person).©entry‘

Figure 5.5: UNL representation of John and Jim know Sachin

know(aoj>thing,obj>thing).@entry‘ ‘know(aoj>thing,obj>thing).@entry‘

A

Sachin(iof>person)‘ obj—

obj—

Sachin(iof>person)‘

—ao0j —>‘ John(iof>person) ‘ faoj—>‘ John (iof>person) ‘

Figure 5.6: Restructured UNL graph.

Restructuring in this case is done by distributing the clauses of the compound UW to the
main UNL graph. The compound UW is treated like a UNL graph, and the restructuring is

23

applied to that compound UW. This gives the clauses of the compound UW. The entry nodes
of these clauses are joined with the nodes to which the compound-UW is initially related. The
resulting graph for the sentence ”John and Jim know Sachin” is shown in 5.6. The relation or
is handled similarly.

5.1.3 Negation

Negation is represented in UNL as an attribute @not. The UNL graph for “John do not like
Sachin” is shown in 5.7. The attribute @not is used while translating the graph to logic.

know(aoj>thing,obj>thing).@entry.@not%aoj—ﬂJohn(iof>person)

I»obj—>

Sachin(iof>person)‘

Figure 5.7: John does not know sachin

5.2 Using SUMO

Before translating the the UNL graph to logical expression, a logical expression has to be associ-
ated with each node in the graph. The logical expression for a UW node consists of a type and a
referent. The referent is a variable or a constant. Initially, the type of the node is the associated
uww and the referent is a variable. The actual logical expression of a UW node is decided based
on the SUMO concept to which the uw of the node is mapped. The SUMO equivalents for the
UNL relations are given in Chapter 4.0. For a node N with type uw, the logical expression is
decided as below.

e If yw is mapped to a SUMO constant C of typeT, the type and referent of the node N is
changed toT and C respectively.

e Ifuw is mapped to a SUMO concept 7, only the type of the node N is changed to7.

e If yw is mapped to a SUMO relation R with a replacing pattern graph P, replace the
relations around ww that are in the pattern P, with the relation R.

‘ IndianPerson :a:‘ = ‘IndianPerson :x)—knows—)‘ Human : Vajapaye

The new representation of the graph in Figure 5.2 is shown above. The UW Vajapaye (iof>person)
is mapped to the constant Vajapaye of type Human. For a node with UW Vajapaye (iof>person),
new type and referent will be John and Human respectively. The UW know(aoj>thing,obj>thing)
is mapped to a relation knows with a pattern containing relations aoj, 0bj. So, this pattern
around the UW is replaced with the relation knows.

5.3 Quantification and Translation

The algorithm for translating the restructured UNL expression to logical expression, and the
method for associating quantifiers with variables are taken from Discourse Representation Theory[KR].

24

Similar to discourse representation structures, the restructured UNL graph will have clauses of
the following structure.

e Simple graph containing only non-logical relations of UNL or SUMO.

e Two graphs connected with an implication.

Two graphs connected with a disjunction.

Two graphs connected with a conjunction.
e A graph containing a node with attribute @not.

The algorithm for translating the simple graph containing only non-logical relations of SUMO
is given in Algorithm 4. The translation for the other categories is defined based on this al-
gorithm. Input for the algorithm is the UNL graph, list of variables from an enclosing scope.
Output is a logic formula and list of free variables in the formula. The logic representation of
the input graph is the conjunction of the logical representation of the nodes, relations in it. The
functions type, referent give the type and referent part of a node. The functions head, tail will
give the originating, destination node of an edge.

Algorithm 4 Translating a simple graph to logical expression

Input: Graph G(Nodes,Relations), Enclosing Scope={z1, z2..}
Output: Formula, Referents .
Referents < {}; ConstraintList < {}
for all Node € NodeSet do
Node < NodeSet.next Element()
Type < type(Node); Var < referent(Node)
if Var not in EnCloingScope then
Con <« instance(Type, Var)
add Con to ConstraintList
end if
end for
for all R € Relations do
rel < label(R)
Source < head(R); x1 < referent(Source)
Target < tail(R); 2 < referent(Target)
Con <+ rel(x1,z2)
add Con to ConstraintList
end for
Formula < the conjunction of all constraints in ConstraintList
Referents is the list of variables present in the graph G.

The algorithm for translating graph containing =, V, A is given in 5. Scope of a graph is the
list of variables created and used in the nodes of that graph. Enclosing Scope is the variables used

25

in the nodes of the enclosing scope. The antecedent of an = is the enclosing scope for the conse-
quent. The input to the algorithm is the restructured UNL graph G(Nodes, Relations), variables
in the enclosing scope of the graph G. The function translate(G, EnclosingScope, Scope) re-
turns the equivalent formula for the graph G, and the list of free variables in the graph is returned
in Scope. The function translate(G, EnclosingScope, Scope) invokes the above algorithm for
translating simple graphs to formula.

Algorithm 5 Translating to Logical Expressions.

Input: Graph G(Nodes,Relations), EnclosingScope={z; - --}
Output: Formula , Scope
if G do not contain logical connectives then
Con < translateSG(G,EnclosingScope,Scope)
else if A node N in graph G has @Qnot attribute then
Con« translate(G, EnclosingScope, Scope)
associate 3 with the free variables z; in Con
Formula < (not (3z1, X2..Con))
end if
for all R in Relations do
if R is of type A = B then
Antecedent<translate(A,EnclosingScope, Scope)
Consequent<—translate(B, Scope,ScopeOut)
if x € Scope of Antecedent, associate a V with it.
if y € Scope of Consequent, associate a 3 with it.
add condition of the form Vz1, zo..(Antecedent = (Jyi, y2.. Consequent));
else if R is of type AV B then
Conl<translate(A,EnclosingScope,Scope)
Con2<translate(B, Scope, ScopeOut)
associate 3 with free variables z; in Conl,Con2.
add condition of the form 3z, z2..(Conl V Con2).
else if R is of type AA B then
Conl<translate(A,EnclosingScope,Scope)
Con2<translate(B, Scope, ScopeOut)
associate 3 with free variables z; in Conl,Con2.
add condition of the form 3z, z2..(Conl V Con2).
end if
end for

Formula of the graph is the conjunction of all the conditions accumulated above.

The quantifier V is associated with the free variables in the antecedent of an implication. 3
is the quantifier for the remaining free variables. The logical representation for the restructured
representation of “Every Indian knows Vajapaye” in

| IndianPerson :z| = || IndianPerson :x}»knows—)‘ Human : Vajapaye

26

is Vz(IndianPerson(x) = (Human(Vajapaye) A knows(x, Vajapaye)). The corresponding
representation produced by the system is shown below. This is in SUO-KIF language which is
used in creating the SUMO ontology. Variables are represented by a string prefixed with ‘7’ as
in ‘7X’.

(forall (7X)
(=> (instance 7X IndianPerson)
(and (instance Vajapaye Human)
(knows ?X Vajapaye)
)))

The consequent part of the implication ‘IndianPerson DX }»knows—>‘ Human:Vajapaye || is in the

scope of the antecedent graph ‘ IndianPerson:x ‘ . The quantifier V is associated with the variable

z as described in the algorithm 5. The quantifier 3 would be given to any free variable in the
consequent part of the implication.

Now that we arrived at the logical representation for a single sentence, add the logical
representation of the UNL graph for “Sachin is an Indian” to the discourse. Logical reasoning
is done by giving the resulting discourse consisting of the two formulas two a theorem prover.
Since the syntax, concepts and relations from SUMO are used for the logical representation,
the vampire inference system of SUMO is used for reasoning tasks. The discourse given to the
theorem prover is

(forall (7X)
(=> (instance ?X IndianPerson)
(and (instance Vajapaye Human)
(knows 7X Vajapaye))))

(instance Sachin IndianPerson)

For the query (knows Sachin Vajapaye), the output of the inference system is an obvious yes
with a long proof. This is only a two-sentence discourse. The UNL representation and the
corresponding logical representation of Marcus problem is given in the Appendix A.

27

Chapter 6

Conclusions

The UNL expressions of natural language sentences- that can be readily represented in predicate
logic- are translated to logic representation using concepts and relations from SUMO. Logical
implication, conjunction and disjunction are introduced by restructuring the arguments of the
UNL relations con, and, or. The method for introducing quantifiers is based on discourse
representation theory. The method worked for a few simple sentences.

The UWs from the UNL knowledgebase are linked to the SUMO terms for obtaining the
logical representation of the UWs. Concepts for nouns and verbs are represented well in SUMO.
But the representation of adjectives and adverbs is very shallow.

The content of SUMO is readily available but the tools for inferencing and systems that
use the ontology are not available earlier. This hampered the progress of the project in initial
stages. The situation is changing now with the release of tools like CELT (Controlled English to
Logic Translator).

Future Work

Controlled Language The approach is tested only for a few sentences. Increase the scope of
the problem to include sentences from controlled languages. These controlled languages

are designed such that they can be easily translated to logic formulas.

Conceptual Graphs Using conceptual graph theory and tools for reasoning directly on the
UNL expressions without translating the UNL expressions to logic formulas, can be con-

sidered for further investigation.

28

Appendix A

Marcus Problem

This is a classical example for working with reasoning in predicate logic. The premises in the
problem are

1. Marcus is a man.

2. Marcus is a Pompeian.

3. All Pompeians are romans.

4. Caesar is a ruler.

5. All Romans are either loyal to or hate Caesar.

6. If people try to assassinate a ruler, they are not loyal to the ruler.
7. Marcus tried to assassinate Caesar

From the above statements, we have to find whether “Marcus is loyal to Caesar or not”.

UNL representation

The UNL representation for the above sentences in the problem is

[S:001]

{org} Marcus is a man. {/org}

{unl}

aoj (Man(icl>male person) ,Marcus(iof>person).@entry)
{/unl}

[/s]

[S:002]

{org} Marcus is a pompein. {/org}

{unl}

aoj (pompein(aoj>thing), Marcus(iof>person).Qentry)
{/unl}

[/s]

29

[S:002]

{org} All pompeins are romans. {/org}

{unl}

mod (pompein(icl>person).@entry, all(mod<thing))
aoj (roman(aoj>thing), pompein(icl>person).@entry)
{/unl}

[/s]

[S:003]

{org} Caesar is a ruler. {/org}

{unl}

aoj(ruler(icl>status), Caesar(iof>person))
{/unl}

[/s]

[S:004]

{org} All Romans either loyal to or hate Caesar. {/org}

{unl}

aoj(:01.@entry, roman(icl>person))

or:01(loyal(aoj>volitional thing,obj>thing), hate(agt>volitional thing,obj>thing))
obj(:01.@entry, Caesar (iof>person))

mod (roman (icl>person), all(mod<thing))

{/unl}

[/s]

[S:005]

{org} If people try to assassinate a ruler, they are not loyal to the ruler {/org}
{unl}

aoj(loyal(aoj>volitional thing,obj>thing).@entry.@not, people(icl>person))
obj(loyal(aoj>volitional thing,obj>thing).Q@entry.@not, ruler(icl>person))

con(loyal(aoj>volitional thing,obj>thing).@entry.@not, try(agt>thing,obj>thing).Qentry)
agt (try(agt>thing,obj>thing) :0S, peopple(icl>person))

pur (try(agt>thing,obj>thing) :0S, assassinate(agt>thing,obj>thing) :0B)
obj(assassinate(agt>thing,obj>thing) :0B, ruler(icl>person))

{/try}

[/s]

[S:006]

{org} Marcus tried to assassinate Caesar. {/org}

{unl}

agt (try(agt>thing,obj>thing) :0T.Qentry, Marcus(iof>person))

pur (try(agt>thing,obj>thing) : 0T.Q@entry, assassinate(agt>thing,obj>thing) :04)
obj(assassinate(agt>thing,obj>thing) :0B, Caesar(iof>person))

{/unl}

[/s]

30

SUMO mappings

Since the logical representation for the UW is given in terms of SUMO concepts, the SUMO
concepts related to the UWs present in the above UNL expressions are listed below.

Marcus (iof>person) [Human : Marcus]

Man (icl>human) [SexAttribute:Male]

pompein (aoj>thing) [EthnicGroup:Pompein]

pompein (icl>person) [Human]-aoj— [EthnicGroup:Pompein]
roman (aoj>thing) [Ethnicroup:Roman]

roman (icl>person) [Human]-aoj— [EthincGroup:Roman]
Caesar (iof>person) [Human:Caesar]

ruler(icl>status) [Position:Ruler]

ruler (icl>person) [Human] -aoj— [Position:Ruler]

loyal(aoj>volitional thing,obj>thing) {aoj, obj} loyal
hate(agt>volitional thing,obj>thing) {agt, obj} dislikes

people(icl>person) [Human]
try(agt>thing,obj>thing) [Tryl
assassinate(agt>thing,obj>thing) [Killing]

The equivalent expression for the UWs is shown above. The nodes in the equivalent SUMO
expression are enclosed in [] with type and referent separated by a colon. The equivalent ex-
pression for loyal(aoj>volitional thing,obj>thing) is a relation loyal obtained by replacing
the the UW, the two relations aoj, thing. For roman(icl>person), the equivalent expression is
a graph with two nodes and a relation. Replace the UWs in the restructured graph with their
equivalent expression from above.

Logical Representation

The logical representation produced for the UNL expressions are shown below. They are edited
for better presentation.

; ;Marcus is a man

(and (instance Marcus Human) (attribute Male Marcus))

; ;Marcus is a pompein

(and (instance Marcus Human) (attribute Marcus Pompein))
; ;All Pompeins are Romans.
(forall (?7X1) (=> (and (instance 7X1 Human)

(attribute 7X1 Pompein))

(attribute ?X1 Roman)))

; ;Caesar is a ruler

(and (instance Caesar Human) (attribute Caesar Ruler))

; ;All Romans are either loyal to or hate Caesar

31

(forall (7X3) (=> (and (instance 7X3 Human) (attribute 7X3 Roman))

(or (and (loyal 7X3 Caesar) (instance Caesar Human))

(and (hate 7?X3 Caesar) (instance Caesar Human)))))

;3 If People try to kill a ruler, they are not loyal to the ruler.

(forall (7X1 7X2 ?T 7A) (=> (and (instance
(instance
(instance
(agent 7T

?X1 Human)

7X2 Human) (attribute 7X2 Ruler)
?T Try) (instance 7A Killing)
7X1)

(hasPurpose 7T 7A)
(patient 7A 7X2))
(not (loyal 7X1 7X2))))

;; Marcus tried to assassinate Caesar
(exists (7X10 7X11)
(and (instance Marcus Human)

(instance 7X10 Try)
(instance 7X11 Killing)
(instance Caesar Human)
(agent ?7X10 Marcus)
(hasPurpose 7X10 7X11)
(patient ?X11 Caesar)))

Inference Engine

The logical expression produced shown above is loaded into the Vampire inference system. If the

system arrives at a contradiction while proving a query, the response of the system is a simple

“no” i

If the query can be satisfies, the proof is produced. After loading the premises, queries

are given to the inference system. The query should be in the SUO-KIF language. The question

here is “Is Marcus is loyal to Caesar”. The query is (loyal Marcus Caesar). The response of

the inference engine for this query as well its negation is shown below.

Query 1: Is Marcus Loyal to Caesar
<query> (loyal Marcus Caesar) </query>
<queryResponse>
<answer result=’no’> </answer>
<summary proofs=’0’/>

</queryResponse>

Query 2: Is Marcus not loyal to Caesar
<query>(not (loyal Marcus Caesar)</query>
<queryResponse>
<answer result=’yes’ number=’1’>
<proof>
FALSE
</proof> </answer>
<summary proofs=’1’/>

</queryResponse>

32

Bibliography

[AO00]

[Fou03]

[F.S93]

[KR]

[MRK*03]

[Ni103]

[NMO00]

[NPO1]

[Sow83]

[SUMO3]

Gianni Amati and Iadh Ounis. Conceptual graphs and first order logic. The Com-
puter Journal, 43, 2000.

UNDL Foundation. Universal networking language specifications, version 3
edition 2, July 1 2003. Retrived from http://www.undl.org/unlsys/unl/
UNLSpecifications.htm.

John F.Sowa. Relating diagrams to logic. In Bernard Moulim Guy W. Mineau and
John F.Sowa, editors, Conceptual Graphs for Knowledge Representation, August
1993.

Kamp and Reyle. From Discourse to Logic: Introduction to Model-theoretic seman-
tics of natural language, formal logic and Discourse representation theory, volume 42
of Studies in logic and Philosophy. Kluwer Academic Publishers.

Amitabha Mukerjee, Achla M Raina, Kumar Kapil, Pankaj Goyal, and Pushpraj
Shukla. Universal networking language- a tool for language-independent semantics?
In In Proc. of Convergence 2003, 2003.

Adam Pease Niles, I. Linking lexicons and ontologies:mapping wordenet to suggested
upper merger ontology. In Chris Welty and Barry Smith, editors, International

Conference on Information and Knowledge Engineering, June 2003.

N.F.Noy and M.A.Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. In In Proceedings of the National Conference on Artificial
Intelligence AAAI 2000.

I Niles and Adam Pease. Towards a standard upper ontology. In Chris Welty and
Barry Smith, editors, Proceedings of the 2nd International Conference on Formal
Ontology in Infomation Systems(FOIS-2001), Ogunquit, Maine, October 17-19 2001.

John F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addision-Wesly, 1983.

Suggested Upper Merged Ontology, 2003. Retrieved from
http://ontology.teknowledge . com.

33

[SUO04] Standard Upper Ontology Working Group, 2004. Retrieved from
http://suo.ieee.org.

[Unl03] UNL system, 2003. Retrived from http://www.undl.org/unlsys/.

[VR] Andrei Voronkov and Alexandre Riazanov. Vampire- a theorem prover for first-order

classical logic. From http://www.cs.man.ac.uk/“riazanoa/Vampire/.

34

