
Knowledge Engineering for Large Ontologies
with Sigma KEE 3.0

Adam Pease1 and Stephan Schulz2

1 Articulate Software, apease@articulatesoftware.com
2 Institut für Informatik, Technische Universität München, schulz@eprover.org

Abstract. The Suggested Upper Merged Ontology (SUMO) is a large,
comprehensive ontology stated in higher-order logic. It has co-evolved
with a development environment called the Sigma Knowledge Engineer-
ing Environment (SigmaKEE). A large and important subset of SUMO
can be expressed in first-order logic with equality. SigmaKEE has inte-
grated different reasoning systems multiple queries to the same theory
has required full re-processing of the full knowledge base.
To overcome this problem, to create a simpler system configuration that
is easier for users to install and manage, and to integrate a state-of-the-
art theorem prover we have now integrated Sigma with the E theorem
prover. The E distribution includes a simple server version that loads
and indexes the full knowledge base, and supports interactive queries via
a simple interface based on text streams. No special modifications to E
were necessary for the integration, so SigmaKEE can be easily upgraded
to future versions.

1 Introduction

The Suggested Upper Merged Ontology (SUMO) [6, 7] is a large, comprehen-
sive ontology stated in higher-order logic [2]. It has co-evolved with a develop-
ment environment called the Sigma Knowledge Engineering Environment (Sig-
maKEE) [8].

SUMO and Sigma have been employed in applications for natural language
understanding [9], database modeling [11] and sentiment analysis [10], among
others.

A large and important subset of SUMO can be expressed in first-order logic
with equality. This subset has been used in several instances of of the LTB
division of the yearly CADE ATP System Competition (CASC)[13, 18, 14] The
LTB (Large Theory Batch) division of CASC is concerned with reasoning in
large theories, and in particular with the task of answering a series of queries
over a large, relatively static background theory.

Since a large part of SUMO can be expressed in first-order logic, SigmaKEE
provides first-order reasoning capabilities to support the user in interacting with
the knowledge base. Earlier versions of SigmaKEE have been integrated with a
customized special purpose version of Vampire [15]. However, later versions of
Vampire were not compatible with the customized version and the integration

interface with SigmaKEE. As a consequence, Sigma did not have access to the
latest deduction technologies.

An interim measure has been integration with the TPTPworld environ-
ment [22] that supports remote access to the entire suite of theorem provers
competing in CASC, also adding facilities for generating explicit proof objects
even with provers that do not natively have that capability. In recent years, an
initial integration has also been done for the LEO-II higher-order logic prover [1].
However, both approaches require re-processing of the full ontology for each
query, and thus result in significant overhead, resulting in noticeable delays even
for simple user queries.

To overcome this problem, to use the latest first-order theorem proving tech-
nology, and to create a simpler system configuration that is easier for users
to install and manage, SigmaKEE 3.0 now integrates the well-known theorem
prover E [16, 17]. The E distribution includes a simple server version that loads
and indexes the full knowledge base, and supports interactive queries via a sim-
ple interface based on text streams. No special modifications to E were necessary
for the integration, so Sigma users will be able to upgrade to successive versions
of E as they are released.

2 Architecture and User Interface

Sigma is a Java and JSP system that typically will run under the Apache Tomcat
web server. It consists of a set of tools integrated at the user level by an HTML
interface. These include:

– translation of theories to and from THF, TPTP, SUO-KIF, OWL and Prolog
formats

– mapping theories to other theories based on similarity of terms names and
definitions

– structured browsing of hyperlinked and sorted theory content, include tree-
structured presentation of hierarchies

– natural language paraphrases of theories in many different languages
– structured browsing of WordNet [4] and Open Multilingual Wordnet [3] and

their links to SUMO
– various kinds of static analysis tools for theories, as well as structured infer-

ence using theorem proving as a client, that attempts to find theory contra-
dictions

The core of the system consists of data structures to manage knowledge
bases, their constituent files, and the statements contained in the files. Analysis,
display, natural language processing and inference components have been added
incrementally around the common data structures. In particular, the facilities to
handle TPTP input and output, and integration with the TPTPworld environ-
ment were added to support development for the CASC competition. Sigma is
an Integrated Development Environment for ontologies in the same sense Eclipse

is an IDE for Java programming. While actual development of theories is per-
formed in a text editor, a suite of tools assists in the process of developing text
files of SUMO-based theories and a typical development process involves having
both Sigma and a text editor running, and the developer frequently switching
attention between the two.

By integrating E into Sigma, SUMO developers can more rapidly test new
theories for consistency, as well as applying them in applications involving au-
tomated deduction. Sigma supports a hyperlinked proof output that links steps
in each proof to display of the statements from which they are derived.

Users interact with Sigma via a web browser. The user interface is straight-
forward, consisting of a window in which queries or statements are made in
SUO-KIF format, and hyperlinked proof results, which are similar to a standard
textbook proof. Steps in the proof are presented along with a brief justification
of how they were derived, whether directly asserted to the knowledge base, or
derived via rules of inference from previous steps.

In a typical workflow, a user writes theory content in a text editor and pe-
riodically loads the file into Sigma. He will frequently use the Sigma browsing
tools to inspect other portions of SUMO, for example, to find useful relations
and classes to help model the knowledge of the task at hand, or simply to check
relation argument orders or argument types. The user can pose queries to E to
test the coverage of the new theory content. Debugging a query that doesn’t
yield an answer often involves breaking down a complex chain of reasoning into
smaller and simpler steps, adding knowledge to complete elements of the chain
and gradually building up to the full line of reasoning desired. This will involve
running queries, checking proofs of lemmas, checking existing portions of SUMO
to see if knowledge that might be assumed present is actually present, and in the
desired form. Based on iterations of this process, the user will keep adding new
statements to a theory in a text editor until the modeling or application task
is complete. In typical usage, this development process is broadly quite similar
to modern programming, just that the language is strictly declarative, rather
than functional or procedural, and therefore the analysis and development tools
themselves are different. But the cycle of development in a text editor, use of
analysis, browsing and debugging tools, then further editing or development of
the ”program” is a familiar one.

3 SigmaKEE/E integration

SigmaKEE has been integrated with E 1.8[16, 17]. E is a powerful equational
theorem prover for full first order logic with equality. It has a number of features
that make it an attractive choice for this integration:

– E supports the TPTP standards for input and output. In particular, it reads
specifications and writes proof objects in the TPTP-3 language [20] and uses
the SZS result ontology [19] to signal success or failure of a proof attempt.
Thus, the main interfaces are well-defined and results are easy to parse.

Web GUI
SigmaKEE front-end

Apache Tomcat
SigmaKEE back-end

e_ltb_runner

Static Background
Knowledge Base/Ontology

Static FOF Background
Knowledge Base

Working Session Assumptions and Query
Working Session Assumptions and Query

Relevance Filter

...

Deduction Control

EE E

TPTP to
SUO-KIF
translation

SUO-KIF
to TPTP
translation

SUMO-KIF
to TPTP
translation

SUO-KIF
to TPTP
translation

Fig. 1. Main architectural components and data flows of SigmaKEE with respect to
the deduction component

– As of version 1.7, E support the proposed TPTP answer standard [21]. It
can report one or multiple answers to queries, i.e. instantiations for top-level
existentially quantified variables in the conjecture that make it true. This is
particularly valuable for query-answering.

– With version 1.8, E can generate and print checkable proof objects with
barely measurable overhead [17]. The proof objects make logical dependen-
cies obvious, and can also help to debug the ontology, in particular by iden-
tifying inconsistencies.

In addition to support for well defined I/O standards and fast proof gener-
ation, E also provides a prototypical implementation of deduction as a service.
The e ltb runner control program in the E distribution supports the efficient
execution of multiple queries over a static background theory, both in batch mode
and in interactive mode. This interactive mode forms the base of the interface
between the SigmaKEE core and the deduction system.

On start-up, e ltb runner reads a specification file that describes the con-
stant background theory, given in the form of files of clauses and formulas in
TPTP-3 syntax. This initial knowledge base is indexed with a bi-directional in-
dex from formulas to function symbols and vice versa. Moreover, various statis-

tics on the distribution of function symbols in the knowledge base are computed.
These pre-computed indices and values allow the efficient application of a pa-
rameterized variant of the SInE algorithm [5].

SUMO

Instantiate
predicate vars

Expand row
variables

Add type
constraints

Rename
predicates

Syntax
translation E

Hyperlink

Remove
higher-order

Syntax
translation

Proof
simplification

Sigma

Fig. 2. Language transforms

The program then enters interac-
tive mode and reads input from the
user via stdin. Users can provide ad-
ditional formulas, either directly or by
specifying TPTP input directives to
load axioms from files. Typically, a
query consists of a number of addi-
tional assumptions and a conjecture
(or question, if answer instantiations
are desired). These formulas are tem-
porarily integrated into the knowledge
base and the indices are updated in
a way that allows for the efficient re-
traction of the formulas and resetting
of the indices. When the user indi-
cates that the current specification is
complete, e ltb runner runs various
different relevancy filters over the ex-
tended knowledge base and extracts a
number of individual proof problems,
each of which contains the conjecture
or query and a number of potentially
useful axioms. These are handed to
different instances of E in automatic
mode. If one of the instances finds
a proof (or a counter-saturation), all
provers are stopped, and the result,

along with the proof or the derivation of the saturation, is provided back on
the standard output channel. If all instances of E time out or hit other resource
limits, the proof attempt fails.

Once the job is processed, the additional formulas are removed from the
knowledge base and the indices, and the system waits for the next user command.

Figure 1 provides an overview of the integration with SigmaKEE with E.
On start-up, the SigmaKEE back-end translates the static ontology into TPTP
format. It starts up e ltb runner in interactive mode, passing the translated
ontology as as the background theory. The back-end connects to the deduction
component via stdin and stdout.

New knowledge entered by the user is kept in a separate working session.
When the user wants to query the knowledge base, the formulas of the current
working session and the query are translated to TPTP syntax and provided as a
job to e ltb runner. There, they are added to the background knowledge, the
relevance filters are applied, and different instances of E try to find an answer to

the query. If successful, the proof is handed to the SigmaKEE back-end, where
it is translated back to SUO-KIF.

Several transformations are required to convert SUO-KIF into TPTP, and
to restore the content in the TPTP3 format proofs to their authored SUO-KIF
versions, as shown in Figure 2. While these transforms are described in more
detail in [7] and [12] a brief overview here may be helpful. First, variables that
are in the predicate position in a rule are removed by instantiating every such
rule with every predicate from the knowledge base that is applicable. Next, the
remaining higher-order logic content that is not expressible in TPTP FOF syntax
is removed. Then row-variables, which stand for multiple arguments in variable-
arity relations are expanded, treating this construct as a macro. SUMO requires
type constraints for the arguments to all relations. To fully implement this in a
non-sorted logic such as TPTP FOF, we prefix all rules with type constraints.
While in TPTP-3 implementations, any symbol identifier can be used either a
function symbol of a given arity or a predicate symbol of a given arity, SUO-KIF
does not share this restriction. Hence, in cases where a symbol is used in more
than one role, occurrences of one type are renamed.

Lastly, the actual syntactic transform of SUO-KIF, which conforms to LISP
S-Expressions is converted to the Prolog syntax of TPTP. Upon return from E,
the SZS ontology tags are extracted to provide the overall status of the result.
The proof is simplified to removed repeated appearances of the same statement.
Answer variables are removed. The syntactic transform is now run in reverse,
converting TPTP statements to SUO-KIF. Finally, predicates are returned to
their originally authored names.

4 Conclusion

Sigma KEE 3.0 brings together a practical development environment for creat-
ing expressive logical theories and a leading first order theorem prover. It is a
start at providing the same sort of powerful development approach for logical
theories that programmers have long enjoyed for procedural and object-oriented
development.

SigmaKEE and SUMO offer a development tool suite and a reusable library
of content on which to build new theories. All the tools are open source, in hopes
of inviting collaboration. E is available from http://eprover.org and as part
of the Sigma distribution from http://sigmakee.sourceforge.net.

References

1. Benzmüller, C., Pease, A.: Progress in automating higher-order ontology reasoning.
In: Konev, B., Schmidt, R., Schulz, S. (eds.) Workshop on Practical Aspects of
Automated Reasoning (PAAR-2010). CEUR Workshop Proceedings, Edinburgh,
UK (2010)

2. Benzmüller, C., Pease, A.: Reasoning with Embedded Formulas and Modalities
in SUMO. The ECAI-10 Workshop on Automated Reasoning about Context and
Ontology Evolution (August 2010)

3. Bond, F., Paik, K.: A survey of wordnets and their licenses. In: Proceedings of the
6th Global WordNet Conference (GWC 2012). Matsue (2012), 64–71

4. Fellbaum, C.: WordNet: An Electronic Lexical Database. Language, Speech,
and Communication, MIT Press (1998), http://books.google.com.hk/books?id=
Rehu8OOzMIMC

5. Hoder, K., Voronkov, A.: Sine Qua Non for Large Theory Reasoning. In: Bjørner,
N., Stokkermans, S.V. (eds.) Proc. of the 23rd CADE, Wroclav. LNAI, vol. 6803,
pp. 299–314. Springer (2011)

6. Niles, I., Pease, A.: Toward a Standard Upper Ontology. In: Welty, C., Smith,
B. (eds.) Proceedings of the 2nd International Conference on Formal Ontology in
Information Systems (FOIS-2001) (2001)

7. Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin, CA
(2011)

8. Pease, A., Benzmller, C.: Sigma: An Integrated Development Environment for
Logical Theories. AI Comm. 26, 9–97 (2013)

9. Pease, A., Li, J.: Controlled English to Logic Translation. In: Poli, R., Healy, M.,
Kameas, A. (eds.) Theory and Applications of Ontology. Springer (2010)

10. Pease, A., Li, J., Nomorosa, K.: WordNet and SUMO for Sentiment Analysis.
In: Proceedings of the 6th International Global Wordnet Conference (GWC2012).
Matsue, Japan (2012)

11. Pease, A., Rust, G.: Formal Ontology for Media Rights Transactions. In: Garcia,
R. (ed.) Semantic Web Methodologies for E-Business Applications. IGI publishing
(2008)

12. Pease, A., Sutcliffe, G.: First Order Reasoning on a Large Ontology. In: Proceedings
of the CADE-21 workshop on Empirically Successful Automated Reasoning on
Large Theories (ESARLT) (2007)

13. Pease, A., Sutcliffe, G., Siegel, N., Trac, S.: Large Theory Reasoning with SUMO
at CASC. AI Comm., Special issue on Practical Aspects of Automated Reasoning
23(2-3), 137–144 (2010)

14. Pelletier, F.J., G., G.S., Suttner, C.: The development of CASC. AI Comm. 15(2-3),
79–90 (2002)

15. Riazanov, A., Voronkov, A.: The Design and Implementation of VAMPIRE. Jour-
nal of AI Communications 15(2/3), 91–110 (2002)

16. Schulz, S.: E – A Brainiac Theorem Prover. AI Comm. 15(2/3), 111–126 (2002)
17. Schulz, S.: System Description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,

A. (eds.) Proc. of the 19th LPAR, Stellenbosch. LNCS, vol. 8312. Springer (2013)
18. Sutcliffe, G., Suttner, C.: The state of CASC. AI Comm. 19(1), 35–48 (2006)
19. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for Automated

Theorem Proving Tools. In: Sorge, V., Zhang, W. (eds.) Distributed Constraint
Problem Solving And Reasoning In Multi-Agent Systems, pp. 201–215. Frontiers
in Artificial Intelligence and Applications, IOS Press (2004)

20. Sutcliffe, G., Schulz, S., Claessen, K., van Gelder, A.: Using the TPTP Language
for Writing Derivations and Finite Interpretations . In: Furbach, U., Shankar, N.
(eds.) Proc. of the 3rd IJCAR, Seattle. LNAI, vol. 4130, pp. 67–81. Springer, 4130
(2006)

21. Sutcliffe, G., Stickel, M., Schulz, S., Urban, J.: Answer Extraction for
TPTP. http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.

html, (acccessed 2013-07-08)
22. Trac, S., Sutcliffe, G., Pease, A.: Integration of the TPTPWorld into SigmaKEE. In:

Proceedings of IJCAR ’08 Workshop on Practical Aspects of Automated Reasoning
(PAAR-2008). CEUR Workshop Proceedings (2008)

