
1

Large Theory Reasoning
with SUMO at CASC

Adam Pease a,∗, Geoff Sutcliffe b,
Nick Siegel a, and Steven Trac b

a Articulate Software, USA
E-mail: {apease,nsiegel}@articulatesoftware.com
b University of Miami, USA
E-mail: {geoff,strac}@cs.miami.edu

The Suggested Upper Merged Ontology (SUMO) has
provided the TPTP problem library with problems
that have large numbers of axioms, of which typically
only a few are needed to prove any given conjecture.
The LTB division of the CADE ATP System Compe-
tition tests the performance of ATP systems on these
types of problems. The SUMO problems were used in
the SMO category of the LTB division in 2008. This
paper presents an analysis of the performance of the
2007 and 2008 CASC entrants on the SUMO problems,
illustrating the improvements that can be achieved by
various tuning techniques.
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1. Introduction

Many reasoning applications rely on knowledge
bases that have large numbers of axioms, of which
only a few are relevant to any given query. The
LTB division of the CADE ATP System Competi-
tion CASC was created in 2008, to the test perfor-
mance of ATP systems on these types of problems.
The SMO problem category of the 2008 LTB divi-
sion used problems based on the Suggested Upper
Merged Ontology (SUMO) [8]. SUMO problems
mimic the situation found in many practical rea-
soning applications in decision support and expert
systems. This paper analyses the performance of
ATP systems on the SUMO problems, comparing
their performance before any tuning done for the
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2008 CASC with their performance in the compe-
tition and on the SUMO problems in subsequent
testing.

2. The Suggested Upper Merged Ontology

SUMO is a free, formal ontology of about 1000
terms and 4000 definitional statements. It is a
formal theory of common-sense concepts, rang-
ing from general notions of time, space, and ac-
tion, to specific information about application do-
mains such as economics and physical sciences. It
is provided in the SUO-KIF language [11], which
is a first-order logic with some higher-order ex-
tensions. The original SUMO, consisting of only
(what were somewhat arbitrarily considered) “up-
per level” terms, was first released in 2001. Up-
per level terms are the most general terms that
name and define concepts, and are not tied to any
particular specialized domain of knowledge. They
include notions like a position in time or space,
a process or event, the Aristotelian distinction of
object versus substance, and so on. The original
SUMO was designed to have roughly 1000 upper
level terms, with associated definitions. This num-
ber was chosen to keep SUMO at a managable size,
and is entirely arbitrary, since there is no objective
test for whether a term is “upper level” or not. As
new terms are added to SUMO, the lowest level
terms in its hierarchy are migrated to the lower
level ontologies that depend on them, in order to
keep its size close to the 1000 term guideline. A
next phase of effort after the creation of SUMO
was to create the MId-Level Ontology (MILO) for
terms that span individual domains, but are more
specific than those in SUMO. Subsequently, sev-
eral years of extension and application domain on-
tology development enlarged the combined the-
ory to an approximate total of 21000 terms and
73000 axioms, including 3000 rules. SUMO has
been mapped to the WordNet lexicon [3] of over
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117000 noun, verb, adjective, and adverb word
senses [9], which not only acts as a check on cov-
erage and completeness, but also provides a basis
for work in natural language processing [12,2,16].
Translation templates that allow SUMO terms and
axioms to be expressed in different natural lan-
guages, including German, Hindi, Chinese, Czech,
Italian and many others, have been created in or-
der to help prevent any linguistic or cultural bias
in the ontology.

SUMO is now in its 75th free version, having
undergone eight years of development, review by
a community of hundreds of people, and appli-
cation in expert reasoning and linguistics. Var-
ious versions of SUMO have been subjected to
formal verification with Vampire [14], which un-
til recently was the only ATP system integrated
into SUMO’s browsing and inference tool suite,
Sigma [11]. The TPTPWorld [18] has now been in-
tegrated into Sigma [22], allowing many different
TPTP-compliant ATP systems to be used with the
preprocessing, optimization, and proof display ca-
pabilities of Sigma. SUMO and all the associated
tools are available at www.ontologyportal.org.

Prior work [10] has described how SUMO can be
transformed into a strictly first-order form. SUMO
has also been translated into the OWL semantic
web language (which is a necessarily lossy trans-
lation, given the limited expressiveness of OWL).
There are a variety of possibilities for first-order
transformation of what appear to be higher-order
constructs. Those used in the export of SUMO
to the TPTP (see Section 3) include quoting all
nested formulae so that they become constants,
and expanding schemas for variable-arity relations
so that one higher-order axiom may result in many
first-order axioms. There are also a variety of pos-
sibilities for caching, which are aimed generally at
optimizing the performance of ATP systems on
SUMO-based problems. By implementing different
strategies such as preprocessing code that is used
to transform the axioms prior to sending them to
an ATP system, optimization options can be tested
without needing to understand the code of many
different ATP systems. If those ideas are success-
ful, prover developers can then adopt and imple-
ment them more efficiently within their different
systems. This possibility for future collaboration
is now open, given the basic level of compatibility
that has been established between SUMO and the
ATP systems that participated in the 2008 CASC.

To give a flavor of the types of queries that
might be answered using SUMO axioms, an exam-
ple is presented here, in its original SUO-KIF syn-
tax. The question is “Is a banana slug an inverte-
brate?”. The problem has an example instance of
a banana slug . . .

(instance BananaSlug10-1 Animal)

. . . a statement that animals without a spinal col-
umn are not vertebrates . . .

(=>

(and

(instance ?A Animal)

(not

(exists (?PART)

(and

(instance ?PART SpinalColumn)

(part ?PART ?A)))))

(not

(instance ?A Vertebrate)))

. . . statements that the banana slug does not have
a spinal column but does have some body parts
. . .

(not

(exists (?SPINE)

(and

(instance ?SPINE SpinalColumn)

(part ?SPINE BananaSlug10-1))))

(and

(instance BodyPart10-1 BodyPart)

(component BodyPart10-1 BananaSlug10-1))

. . . and the conjecture . . .

(instance BananaSlug10-1 Invertebrate)

A successful reasoning system will find the follow-
ing axioms in SUMO, and apply them to prove
the conjecture. The axioms state that animals are
either vertebrates or invertebrates . . .

(partition Animal Vertebrate Invertebrate)

. . . that a partition of subclasses is not ordered . . .

(=>

(partition ?SUPER ?SUB1 ?SUB2)

(partition ?SUPER ?SUB2 ?SUB1))

. . . and that if an individual is an instance of a
partitioned class, and is not an instance of one of
the partitions, then it must be an instance of the
other partition . . .

(=>

(and

(partition ?SUPER ?SUB1 ?SUB2)
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(instance ?INST ?SUPER)

(not (instance ?INST ?SUB1)))

(instance ?INST ?SUB2))

While this example is trivial when the neces-
sary axioms are provided ahead of time, it becomes
very challenging in the context of a large knowl-
edge base, where, in a practical situation, the rel-
evant axioms cannot be known ahead of time. For
example, there are thousands of rules involving the
term instance, and a successful ATP system has
to hunt through the axioms in order to find the
ones that are relevant to the query being posed.

3. SUMO Problems in the TPTP and CASC

The TPTP contains 105 problems based on
SUMO, generated from 35 distinct queries and
three background theories (and some problems
have some additional problem-specific axioms).
The three background theories are (i) just the
∼11000 axioms in SUMO, (ii) the ∼17000 axioms
in SUMO+MILO, and (iii) the ∼67000 axioms in
SUMO+MILO+domain ontologies. These are the
TPTP problems CSR075 to CSR109, with the +1
versions using just the SUMO axioms, the +2 ver-
sions using the SUMO+MILO axioms, and the
+3 versions using all the axioms. All of the prob-
lems are designed to be solved using axioms from
only SUMO itself. The MILO and domain axioms
are distractions for ATP systems, but can contain
symbols that are present in the problem-specific
query and axioms. Efficient separation of axioms
that don’t reference relevant symbols, from those
that reference relevant symbols but which aren’t
needed for the problem solution, from those that
are needed for the solution, is a key to solving these
problems. Identifying ATP systems with this ca-
pability is important for their use in Sigma, and
these problems are useful tests for that purpose.
The problems were released to the ATP commu-
nity in TPTP v3.4.0, about five months before the
2008 CASC. Easy online access to TPTP problems
is available from http://www.tptp.org.

For the LTB division of the 2008 CASC (held
at IJCAR 2008 [19]), the SUMO inference prizes
totaling US$3000 were awarded to the best perfor-
mances on the SMO category of the division. The
LTB division has two ranking classes – the proof
class requires the ATP system to produce a proof
of how its solution was found, while the assur-

ance class merely requires that the system report
whether or not there is a solution. In each ranking
class the winner received $750, the second place
$500, and the third place $250 (a system that wins
the proof ranking class can also win the assurance
ranking class and that was in fact the case for first
and second place).

For the competition, 30 of the 105 problems were
selected, with 26 of the selected problems having
distinct queries (i.e., 4 of the problems differed
from others only by using a subset of the axioms
– solving the smaller problem would trivially pro-
vide a solution to the larger problem, but none
of the ATP systems took advantage of this possi-
bility). All the problems were presented together
at one time to the ATP systems, allowing them
to process or optimize on them collectively, and
to determine for themselves in what order to at-
tempt them. Each ATP system was given an over-
all time limit of 7200 seconds to solve the 30 prob-
lems. This “batch” approach marked a departure
from the existing CASC divisions, in which prob-
lems are presented individually and sequentially. It
was also a departure from most previous applica-
tions of formal theorem proving with Sigma, where
queries are typically presented sequentially by a
user. However, one can easily envision classes of
applications where a set of problems are presented
at the same time. This test format also allowed
machine learning approaches to explore optimiza-
tions strategies. Both the sequential and batch test
modes are interesting and pragmatic.

Although not the focus of this paper, an addi-
tional “validation challenge” was created to sup-
port the participation of model finders. The chal-
lenge asks ATP systems to verify the consistency
of, or provide feedback to repair, each of the
SUMO, SUMO+MILO, and SUMO+MILO+domain
axiom sets. For each set of axioms there is a prize
of $100 for completing the challenge with either re-
sult. The winners of the challenge were announced
and received their awards at the 2008 CASC re-
sults presentation.

4. Pre-CASC Testing

In order to test whether it was even reasonable
to base a CASC category on the SUMO problems,
all the ATP systems in the SystemOnTPTP suite
at the time were run on all 105 SUMO problems
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in the TPTP, and the results analyzed. The sys-
tems were Bliksem 1.12, CARINE 0.734, CiME
2.01, Darwin 1.4.1, DarwinFM 1.4.1, DCTP 1.31,
E 0.999, E-KRHyper 1.0, EQP 0.9d, Equinox 1.3,
Fampire 1.3, Faust 1.0, FDP 0.9.16, Fiesta 2, Gan-
dalf c-2.6, Geo 2007f, GrAnDe 1.1, iProver 0.2,
leanCoP 2.0, LeanTAP 2.3, Mace2 2.2, Mace4
1207, Matita 0.1.0, Metis 2.0, Muscadet 2.7a, Ot-
ter 3.3, Paradox 2.3, Prover9 1207, S-SETHEO 0.0,
SETHEO 3.3, SNARK 20070805, SOS 2.0, SPASS
3.0, SRASS 0.1, Theo 2006, Vampire 9.0, Wald-
meister 806, zChaff 04.11.15, and Zenon 0.5.0. The
problems were presented to the ATP systems indi-
vidually and sequentially. A time limit of 600 sec-
onds was imposed on each ATP system run.

Overall performance, in terms of the number of
problems solved for each background theory, the
total number of problems solved, the average time
over all problems, the average time over the prob-
lems solved, and the solving efficiency (the total
number of problems solved divided by the aver-
age time over the problems solved), is shown in
Table 1. The systems that are not listed did not
solve any problems. Even the best performing sys-
tems did not solve a majority of the 105 problems
in the test set: Vampire solved 31, Fampire solved
20, E solved 15, and Metis solved 14, with the
other systems in the single digits or having no so-
lutions at all. Systems generally failed because of
timeouts, rather than errors in parsing or memory
space. It is notable that Zenon and Equinox, both
lower ranked overall, were top performers when the
largest background axiomatization was used. Gen-
erally, the overall performance and the individual
axiomatization performances do not align well, in-
dicating sensitivity to the increasing number of un-
necessary axioms. The average times taken and the
solving efficiencies are also unaligned - the rank-
ing of the systems is very dependent on the prob-
lems and the desired performance characteristics.
The average time over all problems is appropri-
ate for an interactive context, where a system that
quickly gets its answer or abandons its attempt is
more attractive than one that often takes nearly
the entire allotted time to reach a solution (none
of these systems quickly abandoned their proof at-
tempts). The average time over problems solved is
appropriate when there is a high confidence that
the system will solve each problem. Efficiency pro-
vides a balance of ability to solve problems with
the average time over problems solved.

System SU MI Do Tot Avg. Avg. Eff.

MO LO ms al all sol.

Vampire 9.0 18 13 0 31 463 135 0.23

Fampire 1.3 20 0 0 20 586 525 0.04

E 0.999 15 0 0 15 549 240 0.06

Metis 2.0 5 5 4 14 528 58 0.24

iProver 0.2 9 0 0 9 559 127 0.07

SPASS 3.0 6 0 0 6 596 524 0.01

leanCoP 2.0 5 0 0 5 572 7 0.75

Darwin 1.4.1 4 0 0 4 577 2 1.88

Equinox 1.3 1 1 1 3 584 30 0.10

Zenon 0.5.0 1 1 1 3 583 12 0.24

Muscadet 2.7a 1 1 0 2 592 203 0.01

SNARK 2007 1 1 0 2 589 6 0.34

Faust 1.0 1 0 0 1 598 351 0.00

Table 1

Pre-CASC Performance Data

The differing strengths of the systems suggested
creating a “meta-prover” combining several sys-
tems. One strategy is to give Vampire 400 seconds,
then give Metis up to 200 seconds if Vampire fails
to find a proof. This combined system solves 33
problems, with an average time of 150s and an
efficiency of 0.22. The timeslice allocation might
be improved further, although great efforts in that
direction could be considered overtraining to this
problem set.

An analysis was performed to determine what
set of systems would cover the maximum number
of problems. This is termed a State Of The Art
(SOTA) analysis [21]. This analysis is based on a
subsumption relationship between the sets of prob-
lems solved by the ATP systems. System A sub-
sumes system B if system A solves a strict super-
set of the problems solved by system B. The re-
sult is shown in Figure 1, where an arrow indicates
a subsumption relationship. Vampire exclusively
solved eight problems solved by no other system.
Metis exclusively solved two, and Fampire exclu-
sively solved 1. This analysis suggests creation of
a meta-prover composed of Vampire, Metis, and
Fampire.

5. The 2008 CASC Results

The SMO category of the LTB division of the
2008 CASC was won by Krystof Hoder for SInE
0.3 [4], in both the proof and assurance ranking
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Fampire 1.3

E 0.999

Vampire 9.0 Metis 2.0

Equinox 1.3iProver 0.2

Zenon 0.5.0

Faust 1.0

Muscadet 2.7aSNARK 2007

SPASS 3.0

leanCoP 2.0

Fig. 1. Pre-CASC SOTA Analysis

classes. Second place in both classes went to Josef
Urban for MaLARea 0.3 [23]. Third place went to
Konstantin Korovin for iProver 0.5 [5] in the proof
class and to Andrei Voronkov for VampireLT-10 in
the assurance class. The results were most notable
for SInE, which was developed specifically for the
2008 CASC, and which is a meta-prover based on
an underlying core first-order ATP system. In the
2008 CASC, E [17] was used as its core system. Al-
though SInE did not have permission to use Vam-
pire as its core ATP system in the official competi-
tion, it did enter an unofficial demonstration ver-
sion using Vampire, for which results that showed
it would have performed even better.

MaLARea was notable not only for achieving
second place, but also because it incorporates
machine learning from previous proofs, and is a
meta-prover that uses many state-of-the-art com-
ponents – E, SPASS [24], Paradox [1], and Mace
[6]. MaLARea was able to tune itself to perform
well on the problems. The post-CASC testing de-
scribed in Section 6 does not include MaLARea
because those tests were performed sequentially.
However, we do envision ongoing research with
MaLARea. In particular, we hope to collaborate
with the MaLARea developer to provide an incre-
mental learning mode in which each query is saved,
so that MaLARea can learn from the queries it has
solved so far. While performance on the first few
queries will likely not be comparable to the best
available systems, over time, given a set of prob-
lems based on the same background knowledge,
MaLARea should be able to improve.

The validation challenge proved too difficult,
or the financial incentive too small, to encourage
more than one entrant. However, SInE’s author
Krystof Hoder was able to find a contradiction in
the SUMO+MILO axioms, and therefore won that
prize.

6. Post-CASC Testing

The post-CASC testing was done using the same
environment as the pre-CASC testing described in
Section 4, i.e., the 105 SUMO-based problems were
used, the problems were presented to the ATP
systems individually and sequentially, and a time
limit of 600 seconds was imposed on each run. Old
versions of ATP systems were replaced by new ver-
sions, as used in the 2008 CASC. This provides
an interesting comparison with the pre-CASC per-
formance, and provides insight into changes that
might have been influenced by preparation for the
competition. The systems were Bliksem 1.12, Dar-
win 1.4.3, E 1.0pre, Equinox 3.0, Fampire 1.3,
Faust 1.0, Geo 2007f, iProver 0.5c, leanCoP 2.0,
LeanTAP 2.3, Metis 2.1, Muscadet 3.0, OSHL-S
0.1, Otter 3.3, Prover9 0908, randoCoP 1.1, SInE
0.3, SNARK 20080805r005, SOS 2.0, SPASS 3.01,
SRASS 0.1, Theo 2006, Vampire 10.0, VampireLT
10.0, and Zenon 0.5.0.

Table 2 shows the post-CASC performance data
of the systems. SInE was the clear winner – it
solved significantly more problems, and was sig-
nificantly faster, than the other ATP systems. It
solved 55 problems, compared to a second place of
47. In particular, SInE exclusively solved 13 prob-
lems that no other system was able to solve (al-
though it failed to solve some problems that other
systems did). One interesting observation that can
be seen in the data is that Fampire solved a signifi-
cant number of problems but solved them at a sig-
nificantly lower rate than other systems. A num-
ber of systems failed to solve any problems, and
a number of systems – leanCoP, Equinox, Faust,
SPASS, Muscadet, and Zenon solved less than 10
problems.

Table 3 shows the ratios of performance figures
between corresponding pre-CASC and post-CASC
versions of systems (so that high numbers are
good for the total solved and efficiency, low num-
bers are good for average times). Many systems
demonstrated improvement. Overall, iProver had
the greatest performance improvement. iProver
also exclusively solved two problems (SInE and
iProver were the only two systems with exclusive
solutions). Not every system improved, some sys-
tems whose developments were not tied to large
theory processing even saw slight decreases in per-
formance. Others, such as Metis and Fampire, were
overtaken as developers who had new ideas, or sim-
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System SU MI Do Tot Avg. Avg. Eff.

MO LO ms al all sol.

SInE 0.3 21 16 22 59 267 8 7.39

VampireLT 10.0 16 12 19 47 411 177 0.27

iProver 0.5c 15 14 15 44 378 71 0.62

Vampire 10.0 12 7 13 32 452 115 0.28

E 1.0pre 8 7 11 26 506 219 0.12

Fampire 1.3 7 7 6 20 586 525 0.04

Darwin 1.4.3 4 4 6 14 522 17 0.81

Metis 2.1 6 3 5 14 531 79 0.18

SNARK 2008 6 1 5 12 533 17 0.71

randoCoP 1.1 3 5 2 10 560 184 0.05

SPASS 3.01 2 2 2 6 596 524 0.01

leanCoP 2.0 1 2 2 5 572 7 0.75

Equinox 3.0 0 1 2 3 583 16 0.19

Zenon 0.5.0 0 0 3 3 583 14 0.20

Muscadet 3.0 0 0 2 2 591 150 0.01

Faust 1.0 0 1 0 1 598 351 0.00

Table 2

Post-CASC Performance Data

System Total Avg. Avg. Eff.

solved all sol.

SNARK 2007 & 2008 6.00 0.91 2.90 2.07

iProver 0.2 & 0.5c 4.89 0.68 0.56 8.74

Vampire 9.0 & 10.0 3.56 0.98 0.91 3.93

Darwin 1.4.1 & 1.4.3 3.50 0.90 8.15 0.43

E 0.999 & 1.0pre 1.73 0.92 0.91 1.89

Muscadet 2.7a & 3.0 1.00 1.00 0.74 1.35

Equinox 1.3 & 3.0 1.00 1.00 0.54 1.86

Metis 2.0 & 2.1 1.00 1.01 1.35 0.74

Table 3

Ratios of Pre- and Post-CASC Performance Data

ply more resources to put to the task of handling
large theories, created new versions of their sys-
tems.

The post-CASC SOTA analysis is considerably
more complicated than the pre-CASC analysis,
and is shown in Figure 2. Many more problems
were solved by more systems. SInE, VampireLT,
iProver 0.3, and iProver 0.5c form the smallest set
of ATP systems that together solved all problems
solved by any system. No one system solved all
problems, and no one system could handle all the
problems that all other systems could handle col-
lectively.

SInE 0.3VampireLT 10.0 iProver 0.5c

Vampire 10.0 E 1.0Darwin 1.4.3 Metis 2.1

Fampire 1.3

SNARK 2008

Zenon 0.5.0

Muscadet 3.0

Faust 1.0

leanCoP 2.0

SPASS 3.01 Equinox 3.0randoCoP 1.1

Fig. 2. Post-CASC SOTA Analysis

7. Conclusion

The SMO of the LTB division of CASC moti-
vates the development of high performance rea-
soning on practical problems that use a broad
knowledge base. This has yielded some clear re-
sults regarding performance on a new class of prob-
lems, as well as providing the application develop-
ment community with ATP systems that are more
closely optimized to the needs of one sort of prac-
tical inference.

An intriguing practical development is the SinE
system’s “relevance detector” preprocessor. In the
2008 CASC it was found that the core ATP sys-
tem used with SInE did not have a dominant effect
on performance. The SInE developer would have
liked to have used the highest performance ATP
system as its core. However, the Vampire devel-
oper did not give permission for it to be used with
SInE in the competition, and SInE was able to
win using E as its core. This indicates that signifi-
cant speedups are possible through relatively sim-
ple preprocessing optimizations, rather than rely-
ing on the use of more complex ATP systems. In
particular, the ability to extract a small but suffi-
cient subset of axioms from a large axiomatization,
to solve a given problem, is a key capability for
the application of automated reasoning over large
knowledge bases. In addition to the SInE “rele-
vance detector”, there have been other successful
efforts in this direction, e.g, [7,20,23,15]. The ef-
fects of such approaches can be amplified by com-
bining them with approaches that take advantage
of the structure that is typically inherent in large
knowledge bases, as done in, e.g., [13].

In order to obtain improvements in a consistent
way it will also be necessary to understand why
different calculi and systems behave so differently
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for these types of problems. A deep understand-
ing of the effects of different calculi, search strate-
gies, data structures, preprocessing, etc., is nec-
essary, but getting any reliable results in this di-
rection tends to be extremely difficult. While the
2008 CASC report [19] provides some details, real
insights are best obtained by direct communica-
tion with the system developers (this is one of the
real advantages of entering, or at least attending,
CASC!). Therefore, for now, the style of empiri-
cal evaluation provided by this paper is a most ef-
fective way of building an understanding of auto-
mated reasoning for these types of problems.

In the future, the number of SUMO-based prob-
lems in the TPTP, and hence the number of prob-
lems in the SMO category in CASC, is expected
to be increased. This will benefit future empiri-
cal testing of ATP systems for such large theory
problems. A “stratified” set of problems of differ-
ent expressiveness is also planned, by extracting
the Horn clause and description logic subsets of
SUMO, and basing problems on those subsets. The
creation of new problems will make it possible to
keep some SMO problems hidden until their use
in CASC. It remains to be seen whether learning
systems will overfit to published TPTP problems,
or have to underfit and therefore not achieve sig-
nificant optimization.

References

[1] K. Claessen and N. Sörensson. New Techniques
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